11 research outputs found

    Conversão de imagens em RGB em cartas de cores do solo de Munsell

    Get PDF
    [Objective] The transformation from RGB to Munsell color space is a relevant issue for different tasks, such as the identification of soil taxonomy, organic materials, rock materials, skin types, among others. This research aims to develop alternatives based on feedforward networks and the convolutional neural networks to predict the hue, value, and chroma in the Munsell soil-color charts (MSCCs) from RGB images. [Methodology] We used images of Munsell soil-color charts from 2000 and 2009 versions taken from Millota et al. (2018) to train and test the models. A division of 2856 images in 10% for testing, 20% for validation, and 70% for training was used to build the models. [Results] The best approach was the convolutional neural networks for classification with 93% of total accuracy of hue, value, and chroma combination; it comprises three CNN, one for the hue prediction, another for value prediction, and the last one for chroma prediction. However, the three best models show closeness between the prediction and real values according to the CIEDE2000 distance. The cases classified incorrectly with this approach had a CIEDE2000 average of 0.27 and a standard deviation of 1.06. [Conclusions] The models demonstrated better color recognition in uncontrolled environments than the Transformation of Centore, which is the classical method to transform from RGB to HVC. The results were promising, but the model should be tested with real images at different applications, such as soil real images, to classify the soil color.[Objetivo] La transformación del espacio de color RGB al de color Munsell es un tema relevante para diferentes tareas como la identificación de: la taxonomía del suelo, materiales orgánicos, materiales rocosos. tipo de piel entre otros. Esta investigación tiene como objetivo desarrollar alternativas basadas en las redes feedforward y las Redes Neuronales Convolucionales para predecir el tono, el valor y el croma en las cartas de color del suelo de Munsell (MSCC) a partir de imágenes RGB. [Metodología] Con el fin de entrenar y probar los modelos, usamos imágenes de los gráficos de colores de suelo de Munsell de las versiones 2000 y 2009 tomadas de Millota et al. (2018). Se utilizó una división de 2856 imágenes en 10% para pruebas, 20% para validación y 70% para entrenamiento con miras a construir los modelos. [Resultados] El mejor enfoque fueron las redes neuronales convolucionales para la clasificación con un 93% de precisión total de la combinación de tono, valor y croma (consta de tres CNN, uno para la predicción de tono, otra para la de valor y la última para la de croma), aunque los tres mejores modelos muestran cercanía entre la predicción y los valores reales según la distancia CIEDE2000. Los casos clasificados incorrectamente con este enfoque tuvieron un promedio CIEDE2000 de 0.27 y una desviación estándar de 1.06. [Conclusiones] Los modelos demostraron un mejor reconocimiento de color en entornos no controlados que la transformación de Centore, la cual es el método clásico para transformar de RGB a HVC. Los resultados fueron prometedores, pero el modelo debe evaluarse ampliamente con imágenes reales del suelo para clasificar su color.[Objetivo] A conversão do espaço de cor RGB para o espaço de cores Munsell é um tema relevante para diferentes tarefas como a identificação: da taxonomia do solo, dos materiais orgânicos, dos materiais rochosos, do tipo de pele, dentre outros. Esta pesquisa tem como objetivo desenvolver alternativas baseadas nas redes feed-forward e nas Redes Neurais Convolucionais (CNN) para prever o matiz, o valor e o croma nas cartas de cores do solo de Munsell (MSCC) a partir de imagens RGB. [Metodologia] Para treinar e testar os modelos, usamos imagens dos gráficos de cores do solo de Munsell das versões 2000 e 2009 tomadas de Millota et al. (2018). Foi usada uma divisão de 2856 imagens em 10% para testes, 20% para validação e 70% para treinamento com o intuito de construir os modelos. [Resultados] O melhor enfoque foram as redes neurais convolucionais para a classificação com 93% de precisão total da combinação de matiz, valor e croma (consta de três CNN, um para a previsão de matiz, outra para a previsão de valor e a última para a previsão de croma), embora três melhores modelos tenham mostrado proximidade entre a previsão e os valores reais dependendo da distância CIEDE2000. Os casos classificados incorretamente com este enfoque tiveram uma média CIEDE2000 de 0,27 e um desvio padrão de 1,06. [Conclusões] Os modelos demonstraram um melhor reconhecimento de cor em ambientes não controlados que a conversão de Centore, que é o método clássico para converter de RGB a HVC. Os resultados foram prometedores, mas o modelo deve ser amplamente avaliado com imagens reais de solo para classificar sua cor

    Data Preparation and Visualization of Electricity Consumption for Load Profiling

    Get PDF
    The construction of daily electricity consumption profiles is a common practice for user characterization and segmentation tasks. As in any data analysis project, to obtain these load profiles, a stage of data preparation is necessary. This article explores to what extent does the selection of the data preparation technique impacts load profiling. The techniques discussed are used in the following tasks: standardization, construction of data, dimensionality reduction and data enrichment. The analysis reveals a great incidence of the data preparation on the result. The need to make the data preparation process explicit in each report is identified. In particular, it is highlighted that the most usual default standardization process, column standardization, is not adequate in the preparation of energy consumption profiles.Asociacion Universitaria Iberoamericana de Posgrados (AUIP)Ministry of Science and Innovation, Spain (MICINN) Spanish Government PID2020-112495RB-C21 I+D+i FEDER 2020 project B-TIC-42-UGR2

    An Intelligent Approach Using Machine Learning Techniques to Predict Flow in People

    Get PDF
    The goal of this study is to estimate the state of consciousness known as Flow, which is associated with an optimal experience and can indicate a person’s efficiency in both personal and professional settings. To predict Flow, we employ artificial intelligence techniques using a set of variables not directly connected with its construct. We analyse a significant amount of data from psychological tests that measure various personality traits. Data mining techniques support conclusions drawn from the psychological study. We apply linear regression, regression tree, random forest, support vector machine, and artificial neural networks. The results show that the multilayer perceptron network is the best estimator, with an MSE of 0.007122 and an accuracy of 88.58%. Our approach offers a novel perspective on the relationship between personality and the state of consciousness known as Flow

    CUDA-bigPSF: An optimized version of bigPSF accelerated with Graphics Processing Unit

    Get PDF
    Accurate and fast short-term load forecasting is crucial in efficiently managing energy production and distribution. As such, many different algorithms have been proposed to address this topic, including hybrid models that combine clustering with other forecasting techniques. One of these algorithms is bigPSF, an algorithm that combines K-means clustering and a similarity search optimized for its use in distributed environments. The work presented in this paper aims to improve the time required to execute the algorithm with two main contributions. First, some of the issues of the original proposal that limited the number of cores simultaneously used are studied and highlighted. Second, a version of the algorithm optimized for Graphics Processing Unit (GPU) is proposed, solving the previously mentioned issues while taking into account the GPU architecture and memory structure. Experimentation was done with seven years of real-world electric demand data from Uruguay. Results show that the proposed algorithm executed consistently faster than the original version, achieving speedups up to 500 times faster during the training phase.Funding for open access charge: Universidad de Granada / CBUAGrant PID2020-112495RB-C21 funded by MCIN/ AEI /10.13039/501100011033I + D + i FEDER 2020 project B-TIC-42-UGR2

    Application of Fuzzy and Conventional Forecasting Techniques to Predict Energy Consumption in Buildings

    Get PDF
    This paper presents the implementation and analysis of two approaches (fuzzy and conventional). Using hourly data from buildings at the University of Granada, we have examined their electricity demand and designed a model to predict energy consumption. Our proposal was conducted with the aid of time series techniques as well as the combination of artificial neural networks and clustering algorithms. Both approaches proved to be suitable for energy modelling although nonfuzzy models provided more variability and less robustness than fuzzy ones. Despite the relatively small difference between fuzzy and nonfuzzy estimates, the results reported in this study show that the fuzzy solution may be useful to enhance and enrich energy predictions.Ministerio de Ciencia e Innovación” (Spain) (Grant PID2020-112495RB-C21MCIN/AEI/10.13039/501100011033) and from the I+D+i FEDER 2020 project B-TIC-42-UGR20 “Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía.”Next Generation EU” Margaritas Salas aids

    Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study

    Get PDF
    Photovoltaic solar energy is booming due to the continuous improvement in photovoltaic panel efficiency along with a downward trend in production costs. In addition, the European Union is committed to easing the implementation of renewable energy in many companies in order to obtain funding to install their own panels. Nonetheless, the nature of solar energy is intermittent and uncontrollable. This leads us to an uncertain scenario which may cause instability in photovoltaic systems. This research addresses this problem by implementing intelligent models to predict the production of solar energy. Real data from a solar farm in Scotland was utilized in this study. Finally, the models were able to accurately predict the energy to be produced in the next hour using historical information as predictor variables.Ministry of Science and Innovation, Spain (MICINN) Spanish Government PID2020-112495RB-C21I + D + i FEDER B-TIC-42-UGR2

    Munsell Soil Colour Classification Using Smartphones through a Neuro-Based Multiclass Solution

    Get PDF
    Colour is a property widely used in many fields to extract information in several ways. In soil science, colour provides information regarding the chemical and physical characteristics of soil, such as genesis, composition, and fertility, amongst others. Thus, accurate estimation of soil colour is essential for many disciplines. To achieve this, experts traditionally rely on comparing Munsell colour charts with soil samples, which is a laborious process. In this study, we proposed using artificial neural networks to catalogue soil colour with a two-step classification. Firstly, the hue variable is estimated, and then the remaining two coordinates, value and chroma. Our experiments were conducted using three different, common cameras (one digital camera and two mobile phones). The results of our tests showed a 20% improvement in classification accuracy using the lowest-quality camera and an average accuracy of over 90%

    An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings

    Get PDF
    This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR) and the nonlinear autoregressive neural network with exogenous inputs (NARX), respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions

    Artificial Intelligence-Based Prediction of Spanish Energy Pricing and Its Impact on Electric Consumption

    Get PDF
    The energy supply sector faces significant challenges, such as the ongoing COVID-19 pandemic and the ongoing conflict in Ukraine, which affect the stability and efficiency of the energy system. In this study, we highlight the importance of electricity pricing and the need for accurate models to estimate electricity consumption and prices, with a focus on Spain. Using hourly data, we implemented various machine learning models, including linear regression, random forest, XGBoost, LSTM, and GRU, to forecast electricity consumption and prices. Our findings have important policy implications. Firstly, our study demonstrates the potential of using advanced analytics to enhance the accuracy of electricity price and consumption forecasts, helping policymakers anticipate changes in energy demand and supply and ensure grid stability. Secondly, we emphasize the importance of having access to high-quality data for electricity demand and price modeling. Finally, we provide insights into the strengths and weaknesses of different machine learning algorithms for electricity price and consumption modeling. Our results show that the LSTM and GRU artificial neural networks are the best models for price and consumption modeling with no significant difference

    Assessing the impact of soiling on photovoltaic efficiency using supervised learning techniques

    No full text
    The accumulation of dust and other particles on solar panels, known as soiling, is a significant factor that affects their performance, leading to reduced efficiency if not addressed properly. In this study, we propose a new methodology to estimate soiling on solar photovoltaic panels. To address this issue, we utilised data from the University of Jaén and satellite information from NASA. We applied five different machine learning models, including Linear Regression, Random Forest, Decision Tree, Multilayer Perceptron and Long Short-Term memory neural networks to estimate the extent of soiling on the panels. The input data consisted of weather data, as well as operational data of the solar panels. Our results showed that the MLP model had the lowest average error of 0.0003, indicating its effectiveness in estimating the extent of soiling on the panels. This is significantly lower compared to previous proposals in the literature, which had an average error of 0.026. This study demonstrates the effectiveness of using machine learning methods to forecast soiling on photovoltaic panels accurately. The implications of our findings are essential for optimising energy production and improving the efficiency of solar power systems
    corecore